首页 | 本学科首页   官方微博 | 高级检索  
     


Fault Diagnosis for Rolling Bearings with Stacked Denoising Auto-encoder of Information Aggregation
Authors:Li Zhang  Xin Gao  Xiao Xu
Abstract:Rolling bearings are important central components in rotating machines, whose fault diagnosis is crucial in condition-based maintenance to reduce the complexity of different kinds of faults. To classify various rolling bearing faults, a prognostic algorithm consisting of four phases was proposed. Since stacked denoising auto-encoder can be filtered, noise of large numbers of mechanical vibration signals was used for deep learning structure to extract the characteristics of the noise. Unsupervised pre-training method, which can greatly simplify the traditional manual extraction approach, was utilized to process the depth of the data automatically. Furthermore, the aggregation layer of stacked denoising auto-encoder(SDA) was proposed to get rid of gradient disappearance in deeper layers of network, mix superficial nodes' expression with deeper layers, and avoid the insufficient express ability in deeper layers. Principal component analysis(PCA) was adopted to extract different features for classification. According to the experimental data of this method and from the comparison results, the proposed method of rolling bearing fault classification reached 97.02% of correct rate, suggesting a better performance than other algorithms.
Keywords:deep learning  stacked denoising auto-encoder  fault diagnosis  PCA  classification
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《哈尔滨工业大学学报(英文版)》浏览原始摘要信息
点击此处可从《哈尔滨工业大学学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号