首页 | 本学科首页   官方微博 | 高级检索  
     


Ethylene polymerization by alkylidene‐bridged asymmetric dinuclear titanocene/MAO systems
Authors:Feng Lin  Junquan Sun  Xijie Liu  Wuke Lang  Xiaohui Xiao
Abstract:Two asymmetric alkylidene‐bridged dinuclear titanocenium complexes (CpTiCl2)25‐η5‐C9H6(CH2)nC5H4), 1 (n = 3) and 2 (n = 4) have been prepared by treating two equivalents of CpTiCl3 with the corresponding dilithium salts of the ligands C9H7(CH2)nC5H5 (n = 3, 4). Additionally, Ti(η55n‐BuC5H4C5H5)Cl2 (3) and Ti(η55n‐BuC9H6C5H5)Cl2 (4) were synthesized as corresponding mononuclear complexes. All complexes were characterized by 1H, 13C NMR, and IR spectroscopy. Homogenous ethylene polymerization catalyzation using those complexes has been conducted in the presence of methylaluminoxane (MAO). The influences of reaction parameters, such as MAO]/Cat] molar ratio, catalyst concentration, ethylene pressure, temperature, and time have been studied in detail. The results showed that the catalytic activities of both dinuclear titanocenes were higher than those of the corresponding mononuclear titanocenes. Although the two dinuclear complexes were different in only one CH2] unit, the catalytic activity of 2 was about 50% higher than that of 1; however, the molecular weight of polyethylene (PE) obtained by 2 was lower than that obtained from 1. The molecular weight distribution of PE produced by these dinuclear complexes reached 6.9 and 7.3, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3317–3323, 2006
Keywords:alkylidene bridge  dinuclear  metallocene catalysts  polyethylene  polymerization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号