首页 | 本学科首页   官方微博 | 高级检索  
     


Properties and morphology of bioceramics/poly(D,L‐lactide) composites modified by in situ compatibilizing extrusion
Authors:Fang Liu  Yan Jin  Xiaodan Lin  Demin Jia
Abstract:Composites of poly(D ,L ‐lactide) (PDLLA) with hydroxylapatite (HA) and PDLLA with tertiary calcium phosphate (TCP) were prepared by in situ modification with methylenediphenyl diisocyanate (MDI) and molded by piston extrusion at temperature between Tg and Tm of PDLLA. Mechanical properties of the composites increased obviously when compared with the unmodified bioactive ceramic particles/PDLLA composites. The effect of MDI contents on mechanical properties of the composites was studied. At the optimum conditions of 1.0/1.0molar ratios of ? NCO groups in MDI to ? OH groups in PDLLA, bending strength 68.4 MPa and bending modulus 2281.5 MPa, were achieved in composite HA/PDLLA/MDI with 15 wt % HA. Both increased by nearly 30% when compared with that of solution cast HA/PDLLA composites. Interfacial adhesion and compatibility between PDLLA and bioactive ceramic particles (HA and TCP) were investigated. Scanning electron microscopy (SEM) indicated that the interface between HA particles and PDLLA was blurred and HA particles were closely surrounded by PDLLA matrix in HA/PDLLA/MDI composites. Oriented fibrils along with longitudinal direction of extrusion die were also observed on the surfaces of HA/PDLLA/MDI composite. It is confirmed that MDI has improved interfacial adhesion and compatibility between HA particles and PDLLA phase. Fibril structures formed in the extrusion, and it contributed a great deal in enhancing the mechanical properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4085–4091, 2006
Keywords:poly(D,L‐lactide)  bioactive ceramic particles  composites  mechanical properties  morphology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号