首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of different piezo-acting mechanism on two-stage fuel injection and CI combustion in a CRDi engine
Authors:Kim  Jinsu  Kim  Juwan  Jeong  Seokcheol  Han  Sangilk  Lee  Jinwook
Affiliation:1.Department of Mechanical Engineering, Graduate School, Soongsil University, Seoul, 156-743, Korea
;2.Department of Mechanical Engineering, Soongsil University, Seoul, 156-743, Korea
;
Abstract:

In this study, the effects of two piezo injectors operated by different mechanisms on multi-injection and Compression ignition (CI) combustion were investigated. High-pressure injectors for CI engines are divided into two categories according to the actuator: Solenoid and piezo injectors. It is commonly known that both injectors have a hydraulic circuit for fuel injection; thus, the performance of the injector is highly dependent on not only hydraulic characteristics such as volume of internal chambers and nozzle geometry, but also the actuation mechanism. Specially, the direct needle-Driven piezo injector (DPI) is introduced in this study and compared with the indirectacting Piezo injector (PI) to investigate the injection characteristics and influences on CI combustion performance by using spray visualization, injection rate measurement, and single cylinder diesel engine experiments, as well as numerical simulation for injection rate modeling of DPI. In the spray visualization experiment, a high-speed camera was used to examine spray tip penetration length and spray speed with respect to each injector. Also, in order to investigate injection rate information, which is a significantly dominant factor in combustion characteristics, the Bosch-tube method was adapted under the condition of a back pressure of 4.5 MPa, corresponding to engine motoring pressure. Also, a single-cylinder CRDi (Common-rail direct-injection) engine experiment was carried out to determine the effects of different piezo-acting mechanisms on two-stage fuel injection and CI combustion. From the key results obtained by this study, the direct needle-driven piezo injector has a faster SOI (Start of injection) and EOI (End of injection). In addition, the overall shape of the injection rate of DPI was narrow and the injection had a higher spray speed than that of PI. Also, DPI has a higher heat release rate and peak pressure, as verified by the engine experiment. In particular, it was found that DPI showed the possibility of combustion improvement when applying a pilot injection strategy.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号