Abstract: | This work is focused on the analytical solution of a nanofluid consisting of pure water with copper nanoparticle steady flow through convergent-divergent channel. The velocity and temperature distributions are determined by a novel method called Reconstruction of variational iteration method (RVIM). The effects of angle of the channel, Reynolds and Hartmann numbers on the nanofluid flow are then investigated. The influences of solid volume fraction and Eckert number upon the temperature distribution are discussed. Based on the achieved results, Nusselt number enhances with increment of solid volume fraction of nanoparticles, Reynolds and Eckert numbers. Also the fourth order Runge-Kutta method, which is one of the most relevant numerical techniques, is used to investigate the validity and accuracy of RVIM and good agreement is observed between the solutions obtained from RVIM and some known numerical results. |