首页 | 本学科首页   官方微博 | 高级检索  
     


Light and electron microscopic study on the pineal complex of the coelacanth, Latimeria chalumnae Smith
Authors:MA Hafeez  ME Merhige
Abstract:The pineal complex of the coelacanth, Latimeria chalumnae was studied light and electron microscopically. It consists of two vesicles representing parapineal and pineal organs. Both occur intracranially and openly communicate with each other and the brain ventricle. The entire complex shows a striking photoreceptor morphology with sensory, ependymal and nerve cells. The last cell type is more abundant in the parapineal vesicle than in the pineal organ. The following ultrastructural details of the parapineal are noteworthy: 1. The sensory cells possess large inner and outer segments protruding freely in the vesicular cavity. The outer segments measure 8-10 mum in length and consist of as many as 275 lamellae. The basal processes of these cells terminate in neuropil-like regions. Occasionally, dense granules (500-1000 A) of uncertain identity occur in the perinuclear and inner segment cytoplasm of the cells. 2. The supporting cells are of the ependymal type. Their cytoplasm contains a filamentous feltwork and pinocytotic vesicles, but lacks secretory granules. Cytosomes are particularly abundant in cell processes in the neuropil-like zones. The basal end-feet of these cells isolate the receptor and nerve cells from the perivascular space. 3. In the neuropil-like regions, terminals of sensory cells make synaptic contacts with neuronal dendrites. Synaptic ribbon-like profiles in the terminals characterize the contact zones. Only unmyelinated nerve fibers could be observed in the small area of the tissue examined. The results are discussed with regard to photoreceptive and secretory functions of the pineal complex and its evolution in lower vertebrates.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号