首页 | 本学科首页   官方微博 | 高级检索  
     


Microwave power dependence of the optical and structural properties of boron and phosphorus-doped SiC:H films prepared using ECR-CVD
Authors:SF Yoon  R Ji  J Ahn  WI Milne
Affiliation:

a School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore

b University of Cambridge, Department of Engineering, Trumpington Street, Cambridge CB2 1PZ, United Kingdom

Abstract:Hydrogenated silicon carbide films (SiC:H) were deposited using the electron cyclotron resonance chemical vapour deposition (ECR-CVD) technique from a mixture of methane, silane and hydrogen, and using diborane and phosphine as doping gases. The effects of changes in the microwave power on the deposition rate and optical bandgap were investigated, and variations in the photo- and dark-conductivities were studied in conjunction with film analysis using the Raman scattering technique. In the case of boron-doped samples, the conductivity increased rapidly to a maximum, followed by rapid reduction at high microwave powers. The ratio of the photo- to dark-conductivity (σphd) peaked at microwave power of not, vert, similar600 W. Under conditions of high microwave power, Raman scattering analysis showed evidence of the formation and increase in the silicon microcrystalline and diamond-like phases in the films, the former of which could account for the rapid increase and the latter the subsequent decrease in the conductivity. In the case of phosphorus-doped SiC:H samples, it was found that increase in the microwave power has the effect of enhancing the formation of the silicon microcrystalline phase in the films which occurred in correspondence to a rapid increase in the conductivity. The conductivity increase stabilised in samples deposited at microwave powers exceeding 500 W probably as a result of dopant saturation. Results from Raman scattering measurements also showed that phosphorus doping has the effect of enhancing the formation of the silicon microcrystals in the film whereas the presence of boron has the effect of preserving the amorphous structure.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号