首页 | 本学科首页   官方微博 | 高级检索  
     

弱小目标低对比度图像增强算法研究
引用本文:雍 杨 王敬儒 张启衡. 弱小目标低对比度图像增强算法研究[J]. 激光与红外, 2005, 35(5): 370-373
作者姓名:雍 杨 王敬儒 张启衡
作者单位:1. 中国科学院光电技术研究所,四川,成都,610209;中国科学院研究生院
2. 中国科学院光电技术研究所,四川,成都,610209
摘    要:采用分段线性变换对白天亮背景下低对比度图像序列进行对比度增强,最关键的是分段点的选取。提出两种分段点确定方法:多尺度逼近利用目标和背景的灰度值在不同尺度空间中具有不同动态特性的特点,逐次逼近,通过找出目标和背景的过渡区域得到分段点;恒增强率方法确定一个固定的增强率,在直方图中由高到低找出满足该比率的灰度值作为分段点。两种方法均简单易行,试验证明它们能准确地对分段点进行定位,从而有效地增强了图像的对比度。

关 键 词:低对比度图像  图像增强  多尺度逼近  恒增强率
文章编号:1001-5078(2005)05-0370-04

Enhancement of Low Contrast Image Contain Small Target
Yong Yang,WANG Jing-Ru,ZHANG Qi-heng. Enhancement of Low Contrast Image Contain Small Target[J]. Laser & Infrared, 2005, 35(5): 370-373
Authors:Yong Yang  WANG Jing-Ru  ZHANG Qi-heng
Abstract:Selection of the subsection point is the key to enhance low contrast image under light background by subsection linear transformation. Present two methods to choose the subsection point:multiscale app roach (MSA) and constant enhance ratio (CER). The former is based on the princip le that target and background would express a different dynamic behavior in scale-space. It gets the subsection point in transition area between target and background by repetitious app roach. The latter defines a fixed enhance ratio, and find out the gray level that satisfied the ratio as the subsection point from high to low in the histogram. These two methods are simp le and fast. Experimental results prove that those methods can find the subsection point accurately, and enhance the contrast ratio of image effectively.
Keywords:low contrast image  image enhance  multi-scale approach  const enhance ratio
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《激光与红外》浏览原始摘要信息
点击此处可从《激光与红外》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号