首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical investigation of the performance and soil temperature recovery of an EATHE system under intermittent operations
Affiliation:1. Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, 302017, India;2. Civil Engineering Department, Malaviya National Institute of Technology, Jaipur, 302017, India;1. School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China;2. Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA;1. Department of Electrical Engineering, Kermanshah University of Technology, Kermanshah, Iran;2. Electrical Engineering Faculty, Sahand University of Technology, Tabriz, Iran;1. School of Resource and Environmental Engineering, Anhui University, Hefei 230601, China;2. CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China;1. Molecular Biochemistry Laboratory, Materials and Surface Science Institute, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland;2. Department of Chemical Engineering, SSN College of Engineering, Kalavakkam, Tamilnadu, India
Abstract:One of the problems in operating earth air tunnel heat exchangers (EATHE) for cooling in summer, with soil having high specific heat and low moisture content is accumulation of heat around the pipe. The low rate of heat dissipation due to conduction restricts the performance of EATHE over subsequent years. In the present paper, numerical simulations have been performed to investigate the thermal performance and soil temperature during summer operation in Jaipur to estimate extent of soil degradation. The simulation result indicates that by the end of summer, the soil leads to thermal saturation which in turn, may render it unusable for next summer. This scenario demands for heat removal through force convection. Three strategies namely, night purging during summer operation, day operation during winter and night operation during winter were attempted to estimate extent of soil recovery. Simulation results show that the average COPs for summer, summer with night purging, winter day and winter night operation mode are 4.23, 3.68, 5.01, and 6.65 respectively. It was found that advantage of night purging is less than energy required to run blower for night purging. However, winter day/night operation offers space heating and better soil for next summer.
Keywords:EATHE system  Soil thermal saturation  Soil temperature recovery  COP  Soil temperature
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号