首页 | 本学科首页   官方微博 | 高级检索  
     


Improving methane production from wheat straw by digestate liquor recirculation in continuous stirred tank processes
Affiliation:1. Department of Biotechnology, Lund University, Box 124, SE-22100 Lund, Sweden;2. Bioprocess Control AB, Scheelevägen 22, SE-223 63 Lund, Sweden;3. State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China;1. Andalusian Institute for Earth System Research, Universidad de Granada, Av. del Mediterráneo s/n., 18006 Granada, Spain;2. Universidad de Málaga, Escuela Técnica Superior de Ingeniería Industrial, Campus de Teatinos, 29071 Málaga, Spain;1. Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Keelung Rd., Sec. 4, Taipei 106-07, Taiwan;2. Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih Sukolilo, Surabaya 60111, Indonesia;3. Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia;4. Department of Chemical Engineering, University of San Carlos – Talamban Campus, Nasipit, Talamban, Cebu City 6000, Philippines;1. Department of Mechanical Engineering, Recep Tayyip Erdo?am University, 52349 Rize, Turkey;2. Department of Mechanical Engineering, Yildiz Technical University, 34349 Besiktas, Istanbul, Turkey;3. Department of Mechanical Engineering, Istanbul Ayd?n University, 34455 Florya, Istanbul, Turkey
Abstract:Wheat straw is an abundant, cheap substrate that can be used for methane production. However, the nutrient content in straw is inadequate for methane fermentation. In this study, recycling digestate liquor was implemented in single-stage continuous stirred tank processes for enrichment of the nutrient content of straw with the aim of improving the methane production. The VS-based organic loading rate was set at 2 g/(L d) and the solid retention time at 40 days. When wheat straw alone was used as the substrate, the methane yields achieved with digestate liquor recycling was on average 240 ml CH4/g VS giving a 21% improvement over the processes without recycling. However, over time, the processes suffered from declining methane yields and poor stability evidenced by low pH. To maintain process stability, wheat straw was co-digested with sewage sludge or supplemented with macronutrients (nitrogen and phosphorous). As a result, the processes with digestate liquor recycling could be operated stably, achieving methane yields ranging from 288 to 296 ml CH4/g VS. Besides, the processes could not be operated sturdily with supplementation of macronutrients without digestate liquor recycling. The highest methane yield (296 ± 16 ml CH4/g VS) was achieved by co-digestion with sewage sludge plus recycling of digestate liquor after filtration (retention of nutrients and microorganisms). This was comparable to the maximum expected methane yield of 293 ± 13 ml CH4/g VS achieved in batch test. The present study therefore demonstrated that digestate liquor recycling could lead to a decreased dilution of vital nutrients from the reactors thereby rendering high process performance and stability.
Keywords:Anaerobic digestion  Digestate  Macronutrients  Sewage sludge  Wheat straw  AD"}  {"#name":"keyword"  "$":{"id":"kwrd0040"}  "$$":[{"#name":"text"  "_":"anaerobic digestion  CSTR"}  {"#name":"keyword"  "$":{"id":"kwrd0050"}  "$$":[{"#name":"text"  "_":"continuous stirred tank reactors  AMPTS"}  {"#name":"keyword"  "$":{"id":"kwrd0060"}  "$$":[{"#name":"text"  "_":"automatic methane potential test system  BMP"}  {"#name":"keyword"  "$":{"id":"kwrd0070"}  "$$":[{"#name":"text"  "_":"biochemical methane potential  NR"}  {"#name":"keyword"  "$":{"id":"kwrd0080"}  "$$":[{"#name":"text"  "_":"no recycling  NRI"}  {"#name":"keyword"  "$":{"id":"kwrd0090"}  "$$":[{"#name":"text"  "_":"no recycling plus N and P  NRS"}  {"#name":"keyword"  "$":{"id":"kwrd0100"}  "$$":[{"#name":"text"  "_":"no recycling plus sewage sludge  OLR"}  {"#name":"keyword"  "$":{"id":"kwrd0110"}  "$$":[{"#name":"text"  "_":"organic loading rate  RMN"}  {"#name":"keyword"  "$":{"id":"kwrd0120"}  "$$":[{"#name":"text"  "_":"recycling of nutrients and microbes  RMNI"}  {"#name":"keyword"  "$":{"id":"kwrd0130"}  "$$":[{"#name":"text"  "_":"recycling of nutrients and microbes plus N and P  RMNS"}  {"#name":"keyword"  "$":{"id":"kwrd0140"}  "$$":[{"#name":"text"  "_":"recycling of nutrients and microbes plus sewage sludge  RSN"}  {"#name":"keyword"  "$":{"id":"kwrd0150"}  "$$":[{"#name":"text"  "_":"recycling of soluble nutrients  RSNI"}  {"#name":"keyword"  "$":{"id":"kwrd0160"}  "$$":[{"#name":"text"  "_":"recycling of soluble nutrients plus N and P  RSNS"}  {"#name":"keyword"  "$":{"id":"kwrd0170"}  "$$":[{"#name":"text"  "_":"recycling of soluble nutrients plus sewage  SRT"}  {"#name":"keyword"  "$":{"id":"kwrd0180"}  "$$":[{"#name":"text"  "_":"solid retention time  TS"}  {"#name":"keyword"  "$":{"id":"kwrd0190"}  "$$":[{"#name":"text"  "_":"total solids  VS"}  {"#name":"keyword"  "$":{"id":"kwrd0200"}  "$$":[{"#name":"text"  "_":"volatile solids  ww"}  {"#name":"keyword"  "$":{"id":"kwrd0210"}  "$$":[{"#name":"text"  "_":"wet weight
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号