首页 | 本学科首页   官方微博 | 高级检索  
     


Design and real time implementation of type-2 fuzzy vector control for DFIG based wind generators
Affiliation:4. Departments of Microbiology & Immunology and Chemistry, McGill University, 3775 University Street, Montreal, Quebec, H3A 2B4, Canada
Abstract:Doubly fed induction generator is very sensitive to voltage variations in the grid, which pose limitation for wind power plants during the grid integrated operation. Handling the uncertainity in wind speed and grid faults is a major challenge to fulfill the modern grid code requirements. This paper proposes a new control strategy for Rotor side converter using Interval type-2 fuzzy sets which can model and handle uncertainties in the system parameters. The presence of third dimension in the membership function, offers an additional degree of freedom in the design of the controller to counter the effects of fluctuations in wind speed and low voltage during severe grid fault conditions. A 2 MW DFIG connected to the grid is modelled in simulation software RSCAD and interfaced with Real time digital simulator (RTDS) to perform the simulations in real-time. The RTDS platform is considered by many research laboratories as real-time testing module for controller prototyping and also for hardware in the loop (HIL) applications. The controller performance is evaluated in HIL configuration, by performing the real-time simulations under various parameter uncertainties. The proposed controller can improve the low voltage ride through capability of DFIG compared to that of PI and type-1 fuzzy controller.
Keywords:DFIG  Grid integration  Hardware in loop  Interval Type-2 fuzzy logic control  RTDS  Type-1 FLC
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号