首页 | 本学科首页   官方微博 | 高级检索  
     


Improved particle swarm optimization for photovoltaic system connected to the grid with low voltage ride through capability
Affiliation:1. Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo, 11517, Egypt;2. Department of Electrical Engineering, Police Academy, Cairo, Egypt;1. Andalusian Institute for Earth System Research, Universidad de Granada, Av. del Mediterráneo s/n., 18006 Granada, Spain;2. Universidad de Málaga, Escuela Técnica Superior de Ingeniería Industrial, Campus de Teatinos, 29071 Málaga, Spain;1. Department of Mechanical Engineering, Recep Tayyip Erdoğam University, 52349 Rize, Turkey;2. Department of Mechanical Engineering, Yildiz Technical University, 34349 Besiktas, Istanbul, Turkey;3. Department of Mechanical Engineering, Istanbul Aydın University, 34455 Florya, Istanbul, Turkey;1. Department of Architecture, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan;2. Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
Abstract:Grid connected photovoltaic (PV) system encounters different types of abnormalities during grid faults; the grid side inverter is subjected to three serious problems which are excessive DC link voltage, high AC currents and loss of grid-voltage synchronization. This high DC link voltage may damage the inverter. Also, the voltage sags will force the PV system to be disconnected from the grid according to grid code. This paper presents a novel control strategy of the two-stage three-phase PV system to improve the Low-Voltage Ride-Through (LVRT) capability according to the grid connection requirement. The non-linear control technique using Improved Particle Swarm Optimization (IPSO) of a PV system connected to the grid through an isolated high frequency DC–DC full bridge converter and a three-phase three level neutral point clamped DC-AC converter (3LNPC2) with output power control under severe faults of grid voltage. The paper, also discusses the transient behavior and the performance limit for LVRT by using a DC-Chopper circuit. The model has been implemented in MATLAB/SIMULINK. The proposed control succeeded to track MPP, achieved LVRT requirements and improving the quality of DC link voltage. The paper shows superiority of IPSO than Incremental Conductance (IC) method during MPPT mode of PV system.
Keywords:Particle swarm optimization  Maximum power point tracking  PV system  High frequency isolated converter  Low voltage ride through  Grid
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号