首页 | 本学科首页   官方微博 | 高级检索  
     


Whey waste as potential feedstock for biohydrogen production
Affiliation:1. Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India;2. Combustion Engine and Energy Conversion Laboratory, School of Mechanical Engineering, College of Engineering, Hanyang University, Seoul 133-791, Republic of Korea;1. Thermo-catalytic Processes Area (TPA), Bio-Fuels Division (BFD), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India;2. Academy of Scientific and Innovative Research (AcSIR), New Delhi, India;1. Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India;2. Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India;1. Centre for Ocean Research, Sathyabama University, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai 600119, Tamil Nadu, India;2. ESSO-National Institute of Ocean Technology (ESSO-NIOT), Pallikaranai, Chennai 600100, Tamil Nadu, India
Abstract:In-house isolate Clostridium sp. IODB-O3 was exploited for biohydrogen production using cheese whey waste in batch fermentation. Analysis of cheese whey shows, it is enriched with lactose, lactic acid and protein components which were observed most favourable for biohydrogen production. Biohydrogen yield by IODB-O3 was compared with the cultures naturally occurring in waste solely or in combinations, and found that Clostridium sp. IODB-O3 was the best producer. The maximum biohydrogen yield obtained was 6.35 ± 0.2 mol-H2/mol-lactose. The cumulative H2 production (ml/L), 3330 ± 50, H2 production rate (ml/L/h), 139 ± 5, and specific H2 production (ml/g/h), 694 ± 10 were obtained. Clostridium sp. IODB-O3 exhibited better H2 yield from cheese whey than the reported values in literature. Importantly, the enhancement of biohydrogen yield was observed possibly due to absence of inhibitory compounds, presence of essential nutrients, protein and lactic acid fractions which supported better cell growth than that of the lactose and glucose media. Carbon balance was carried out for the process which provided more insights in IODB-O3 metabolic pathway for biohydrogen production. This study may help for effective utilization of whey wastes for economic large scale biohydrogen production.
Keywords:Biohydrogen  Dark fermentation  Lactic acid  Organic acid  Lactose
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号