首页 | 本学科首页   官方微博 | 高级检索  
     


A novel control strategy approach to optimally design a wind farm layout
Affiliation:1. School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia;2. LKC Faculty of Engineering and Science, University Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000 Kajang, Malaysia;1. School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China;2. Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA;1. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China;2. Innovation and Technology Department, GE Grid Solution, Stafford, ST17 4LX, UK;1. Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, 302017, India;2. Civil Engineering Department, Malaviya National Institute of Technology, Jaipur, 302017, India;1. School of Resource and Environmental Engineering, Anhui University, Hefei 230601, China;2. CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China;1. Molecular Biochemistry Laboratory, Materials and Surface Science Institute, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland;2. Department of Chemical Engineering, SSN College of Engineering, Kalavakkam, Tamilnadu, India
Abstract:Recently wind energy has become one of the most important alternative energy sources and is growing at a rapid rate because of its renewability and abundancy. For the clustered wind turbines in a wind farm, significant wind power losses have been observed due to wake interactions of the air flow induced by the upstream turbines to the downstream turbines. One approach to reduce power losses caused by the wake interactions is through the optimization of wind farm layout, which determine the wind turbine positions and control strategy, which determine the wind turbine operations. In this paper, a new approach named simultaneous layout plus control optimization is developed. The effectiveness is studied by comparison to two other approaches (layout optimization and control optimization). The results of different optimizations, using both grid based and unrestricted coordinate wind farm design methods, are compared for both ideal and realistic wind conditions. Even though the simultaneous layout plus control optimization is theoretically superior to the others, it is prone to the local minima. Through the parametric study of crossover and mutation probabilities of the optimization algorithm, the results of the approach are generally satisfactory. For both simple and realistic wind conditions, the wind farm with the optimized control strategy yield 1–3 kW more power per turbine than that with the self-optimum control strategy, and the unrestricted coordinate method yield 1–2 kW more power per turbine than the grid based method.
Keywords:Wind farm layout optimization  Wind farm control optimization  Grid based method  Unrestricted coordinate method  Self-optimum control strategy  Optimized control strategy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号