首页 | 本学科首页   官方微博 | 高级检索  
     


Reactive power control strategy for a wind farm with DFIG
Affiliation:1. Key Laboratory of Solar Thermal Energy and Photovoltaic System, Institute of Electrical Engineering, Chinese Academy of Sciences, Zhongguancun, Haidian, Beijing, 100190, China;2. China Electric Power Research Institute, Nanjing, 210003, Jiangsu, China;3. University of Chinese Academy of Sciences, Beijing, 100049, China;1. Centre for Energy Sciences, Department of Mechanical Engineering, Faculty of Engineering, 50603 Kuala Lumpur University of Malaya, Malaysia;2. Mechanical Engineering Department, Collage of Engineering, King Saud University, 11421 Riyadh, Saudi Arabia;3. Dept. of Mechanical Engineering, Dhaka University of Engineering and Technology, Gazipur, 1700, Bangladesh;1. South China University of Technology, Wushan Road 381#, Tianhe District, Guangzhou 510640, China;2. Jiangsu University, Jiangsu, Xuefu Road 301#, Jingkou District, Zhenjiang 212013, China;1. Huadian Electric Power Research Institute, Hangzhou, Zhejiang 310030, China;2. Department of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China;3. Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi''an Jiaotong University, Xi''an 710049, China;1. Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore;2. Water Desalination & Reuse (WDR) Center King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
Abstract:Reactive power control strategy for a wind farm with a doubly fed induction generator (DFIG) is investigated. Under stator flux-oriented (SFO) vector control, the real power of the DFIG is controlled by the q-axis rotor current Iqr and the reactive power is mainly affected by the d-axis rotor current Idr. To examine the effect of Idr on stator reactive power Qs and rotor reactive power Qr, the DFIG is operated under five different operating modes, i.e, the maximum Qs absorption mode, the rotor unity power factor mode, the minimum DFIG loss mode, the stator unity power factor mode, and the maximum Qs generation mode. In pervious works, stator resistance Rs was usually neglected in deriving the d-axis rotor currents Idr for different DFIG reactive power operating modes. In the present work, an iterative algorithm is presented to compute the d-axis rotor currents Idr for the five reactive power control modes. To demonstrate the effectiveness of the proposed iterative algorithm, the rotor current, rotor voltage, stator current, real power and reactive power of a 2.5 MW DFIG operated under the five different operating modes are computed.
Keywords:DFIG  Reactive power  Induction generator  Maximum power tracking
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号