首页 | 本学科首页   官方微博 | 高级检索  
     


Innovative improvement of a drag wind turbine performance
Affiliation:1. Mechanical Power Engineering Dept. Faculty of Engineering, Ain Shams University, P.O. 11517, Cairo, Egypt;2. Mechanical Power Engineering Dept. Faculty of Engineering-Mattaria, Helwan University, P.O. 11718, Cairo, Egypt;3. Mechanical Power Engineering Dept. Faculty of Engineering, The British University in Cairo, 11837, Egypt;1. College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China;2. National Engineering Laboratory for Wheat and Corn Further Processing, Zhengzhou 450001, China;1. Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia;2. Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia;1. Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India;2. Department of Biotechnology and Chemical Technology, Aalto University School of Chemical Technology, P.O. Box 16100, 00076 Aalto, Finland
Abstract:Drag type wind turbines have strong potential in small and medium power applications due to their simple design. However, a major disadvantage of this design is the noticeable low conversion efficiency. Therefore, more research is required to improve the efficiency of this design. The present work introduces a novel design of a three-rotor Savonius turbine with rotors arranged in a triangular pattern. The performance of the new design is assessed by computational modeling of the flow around the three rotors. The 2D computational model is firstly applied to investigate the performance of a single rotor design to validate the model by comparison with experimental measurements. The model introduced an acceptable accuracy compared to the experimental measurements. The performance of the new design is then investigated using the same model. The results indicated that the new design performance has higher power coefficient compared with single rotor design. The peak power coefficient of the three rotor turbine is 44% higher than that of the single rotor design (relative increase). The improved performance is attributed to the favorable interaction between the rotors which accelerates the flow approaching the downstream rotors and generates higher turning moment in the direction of rotation of each rotor.
Keywords:Wind energy  VAWT  Savonius rotor  CFD  Aerodynamics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号