首页 | 本学科首页   官方微博 | 高级检索  
     


Optimization hydrogen production over visible light-driven titania-supported bimetallic photocatalyst from water photosplitting in tandem photoelectrochemical cell
Affiliation:1. Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia;2. Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia;3. Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia;4. Center for Corrosion Research & Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia;5. Electrical & Electronic Engineering Department, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia;6. Centralized Analytical Laboratory, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia;1. Department of Electrical Engineering, M.I.T.S., Gwalior, India;2. Department of Electrical Engineering, IIT Delhi, India;1. Institut national de la recherche scientifique, Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada;2. Département de génie mécanique, École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montréal, QC, H3C 1K3, Canada;1. Department of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, PR China;2. Zhejiang Tianneng Energy Technology Co., Ltd., Changxing County, Zhejiang Province 313100, PR China;1. Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia;2. Electrical & Computer Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada;1. Faculty of Engineering, Department of Electrical Engineering, Bu-Ali Sina University, Hamedan, Iran;2. Faculty of Engineering, Department of Electrical Engineering, Ayatollah Borujerdi University, Broujerd, Iran
Abstract:Solar hydrogen production was investigated over a Cu-Ni doped TiO2 photocatalyst from water photosplitting in a tandem photoelectrochemical cell, which was made up by connecting a modified photoelectrochemical cell to dye solar cell in a series. A mathematical representation for preparation parameters for hydrogen production was successfully generated. Optimization of hydrogen production was conducted with varying preparation parameters of Cu-Ni doped TiO2 photocatalyst including molar ratios of water, acetic acid and Cu to titanium tetraisopropoxide. The optimum preparation parameters of photocatalyst was obtained at molar ratios of water, acetic acid and Cu to titanium tetraisopropoxide of 32, 4.9, and 5.9, respectively. Physical and photoelectrochemical characterization revealed that low content of water and Cu decreased the charge transfer resistance and charge carrier recombination rate on Cu-Ni/TiO2 surface. This is attributed to the better crystallinity and less degree of agglomeration which led to obtain optimum particle size at this condition. Maximum hydrogen production rate of 2.12 mL/cm2. h was achieved under the optimum condition using the tandem photoelectrochemical cell in the aqueous KOH and glycerol solution under visible light irradiation (λ > 400 nm).
Keywords:Solar hydrogen  Water photosplitting  Photoelectrochemical cell  Optimization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号