Terminal voltage build-up and control of a DFIG based stand-alone wind energy conversion system |
| |
Affiliation: | 1. Laboratory of Environmental and Energy Efficient Design of Buildings and Settlements, Department of Environmental Engineering, Democritus University of Thrace, Vas.Sofias 12, Xanthi 67 100, Greece;2. Centre for Renewable Energy Sources and Saving, Solar Thermal Systems Department, 19th km Marathon Ave., Pikermi 19009, Greece;3. Process Equipment Design Laboratory, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece;1. Department of Systems Engineering and Engineering Management, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region;2. School of Management, University of Texas at Dallas, Richardson, TX, USA;3. Centre for Systems Informatics Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region;1. Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;2. Dipartimento Energia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;1. University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, HR-10000 Zagreb, Croatia;2. GULIN Automation and Control Ltd., Put kroz Meterize 33, HR-22000 Šibenik, Croatia |
| |
Abstract: | The paper presents the voltage build-up process and the terminal voltage control of a doubly-fed induction generator (DFIG) driven by a pitch controlled wind turbine for the supply of autonomous system without any auxiliary source. A control strategy for the complete system including voltage build-up phase is developed with a view to provide as well as possible the required power for load. Indirect stator flux-oriented vector control is proposed to keep the stator voltage constant by means of a back-to-back converter connected to the rotor side, while the management system is supported by the pitch angle and the load shedding controllers. A novel scheme for voltage build-up is presented, which requires no additional hardware support, and physical interpretation of how self-excitation can occur from residual magnetism in the machine core is examined. A reliable start-up process is accomplished by using an appropriate voltage reference ramp which enables minimizing energy loss during the starting. The proposed system is modeled and simulated using Matlab/Simulink software program to examine the dynamic characteristics of the system with proposed control strategy. Dynamic simulation results for different transient conditions demonstrate the effectiveness of the proposed control strategy. |
| |
Keywords: | Doubly-fed induction generator Wind turbine system Stand-alone mode Power management Voltage and frequency regulation Voltage build-up process |
本文献已被 ScienceDirect 等数据库收录! |
|