首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical analysis of heat transfer in supercritical water cooled flow channels
Authors:X Cheng  B Kuang  YH Yang
Affiliation:aSchool of Nuclear Science and Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
Abstract:Research activities are ongoing worldwide to develop nuclear power plants with a supercritical water cooled reactor (SCWR) with the purpose to achieve a high thermal efficiency and to improve their economical competitiveness. However, there is still a big deficiency in understanding and prediction of heat transfer in supercritical fluids. In this paper, heat transfer of supercritical water has been investigated in various flow channels using the computational fluid dynamics (CFD) code CFX-5.6 to provide basic knowledge of the heat transfer behaviour and to gather the first experience in the application of CFD codes to heat transfer in supercritical fluids. Three different flow channels are selected, i.e. circular tubes, the sub-channel of a square-array rod bundle and the sub-channel of a triangular-array rod bundle. The effect of mesh structures, turbulence models, as well as flow channel configurations is analysed. Based on the present results, recommendations are made on the application of turbulence models to the heat transfer of supercritical fluids in various flow channels. A new definition for the onset of heat transfer deterioration is proposed. A strong non-uniformity of heat transfer is observed in sub-channel geometries. This non-uniformity has to be taken into account in the design of fuel assemblies of SCWR.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号