摘 要: | 将11种奶粉原样配制及组成77个奶粉样本,以脂肪含量为检测指标,结合偏最小二乘法开展近红外光谱定量分析研究。2次异常光谱剔除,识别出异常样本(14,52,76)并予以剔除。74个奶粉样本进行平滑、导数和标准变量变换等6种光谱预处理,确定标准正态变量变换结合Norris一阶导为最佳光谱预处理方式,其交叉验证均方根误差为0.354 7,交叉验证相关系数平方达到0.990 8;最佳前处理光谱结合3种波段选择方法优化模型性能,与全光谱模型形成对比,确定随机蛙跳(random frog,RF)为最佳波段选择方式,其模型的训练集和测试集相关系数平方分别为0.997 2和0.997 0,训练集和测试集均方根误差分别为0.186 2和0.198 2。结果表明:采用蒙特卡罗异常光谱剔除(Monte-Carlo sampling,MCS),光谱预处理结合随机蛙跳波段优化技术可提高奶粉脂肪近红外定量模型的泛化性和预测能力。
|