摘 要: | 为了更好地利用近红外光谱分析技术对玉米伏马菌素含量进行预测,减小因玉米产地间的差异对玉米近红外光谱预测模型的影响,以不同产地的玉米作为研究对象,利用x-y共生距的方法将试验样本划分为校正集与验证集,采用经典的偏最小二乘法分别建立不同产地和混合产地的玉米伏马菌素预测模型,并采用验证集样本分别对模型的预测精度进行验证。为了减小建模及预测过程的运算量,采用连续投影算法(SPA)和竞争性自适应加权算法(CARS)对不同产地玉米的近红外光谱的特征波长进行筛选,筛选出22个特征波长变量作为输入,大大降低了建模及预测过程的运算量,同时预测准确度也有所改善,其预测相关系数达到0.954,为快速、无损地实现对玉米伏马菌素的检测提供了可靠的理论依据。
|