首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法的RBF-PLS方法在辐射源识别中的应用
引用本文:寇华, 王宝树. 基于遗传算法的RBF-PLS方法在辐射源识别中的应用[J]. 电子与信息学报, 2007, 29(5): 1031-1034. doi: 10.3724/SP.J.1146.2005.01228
作者姓名:寇华  王宝树
作者单位:西安电子科技大学计算机学院,西安,710071;西安电子科技大学计算机学院,西安,710071
摘    要:RBF-PLS是一种有效的径向基网络构造方法,较好地解决了隐单元数和各中心的取值问题,但宽度系数和PLS成分数难以选定。为此,该文提出采用混合编码遗传算法,以径向基网络的拟合性能和泛化能力为目标,优选宽度系数和PLS成分数,以此建立RBF-PLS-GA模型。将该方法用于雷达辐射源识别,效果良好,明显优于其他网络模型。

关 键 词:辐射源识别  径向基网络  偏最小二乘回归  遗传算法
文章编号:1009-5896(2007)05-1031-04
收稿时间:2005-09-26
修稿时间:2006-04-24

The RBF-PLS Approach Based on Genetic Algorithm and Its Application in Radar Model Recognition
Kou Hua, Wang Bao-shu. The RBF-PLS Approach Based on Genetic Algorithm and Its Application in Radar Model Recognition[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1031-1034. doi: 10.3724/SP.J.1146.2005.01228
Authors:Kou Hua  Wang Bao-shu
Affiliation:College of Computer Science and Technology, Xidian Univ., Xi’an 710071, China
Abstract:Radial Basis Function-Partial Least Square regression(RBF-PLS)approach is a rapid and efficient method in constructing Radial Basis Function Network(RBFN),and it has put forward a solution to the problem about the choice of the number and the centers of the radial basis functions.But it is difficult to optimize the spread parameter of the radial basis functions and the number of PLS components extracted.A hybrid coding genetic algorithm,which uses different coding methods for different type of variables is proposed to get the optimal solution for the spread parameter and the number of PLS components.The object function of GA is the performance of fitting and predicting of the model.The approach is successfully applied to radar model recognition.
Keywords:Radar recognition   Radial basis function network   Partial least squares regression   Genetic algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号