首页 | 本学科首页   官方微博 | 高级检索  
     


Dazzling cool white light emission from Ce3+/Sm3+ activated LBZ glasses for W-LED applications
Authors:L Vijayalakshmi  K Naveen Kumar  Pyung Hwang
Affiliation:1. Department of Automotive Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea;2. Department of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
Abstract:We synthesized a batch of co-doped (Ce3++Sm3+): LBZ glass specimens by melt quenching process and their structural and radiation properties were studied by employing XRD, FE-SEM, optical absorption, photoluminescence and lifetime measurements. UV–Vis–NIR absorption studies of the co-doped (Ce3++Sm3+): LBZ glassy matrix displays pertinent bands of both Ce3+ and Sm3+ ions. Individually doped Sm3+: LBZ glass exhibit bright orange emission at 603?nm (4G5/26H7/2) under the excitation of 403?nm. Nevertheless, the luminescence intensities pertaining to Sm3+ were extraordinarily increased by co-doping with Ce3+ ions to Sm3+: LBZ glassy matrices because of energy transfer from Ce3+ to Sm3+. The fluorescence spectra of co-doped (Ce3++Sm3+): LBZ exhibits characteristic emission bands of Ce3+ (441?nm, blue) and Sm3+ (603?nm, reddish orange) under the excitation of 362?nm. Decay curves of Ce3+ and Sm3+ ions in co-doped glass has been fitted to double exponential nature. The decreasing lifetime of donor ion and rising lifetime of acceptor ion in double doped glass could support the energy transfer from Ce3+ to Sm3+ ions in the host matrix. The CIE coordinates and CCT values were calculated for all the obtained co-doped glassy samples from their luminescence spectra. By adding Ce3+ ions to individually doped Sm3+: LBZ glass matrix, the emitting color changes from reddish orange to white light which resembles the energy transfer from Ce3+ to Sm3+ ions. These studies, perhaps implied that attained co-doped (Ce3++Sm3+): LBZ glassy samples are potential materials for white lighting appliances.
Keywords:Energy transfer  Photoluminescence  Cool white light emission
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号