首页 | 本学科首页   官方微博 | 高级检索  
     


Surface oxidation behavior in air and O2-H2O-Ar atmospheres of continuous freestanding SiC films derived from polycarbosilane
Authors:Rongqian Yao  Yinong Zheng  Liang Liao  Rui Zhou  Zude Feng
Affiliation:1. Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China;2. Fujian Key Laboratory of Advanced Materials (Xiamen University), Xiamen 361005, China;3. Key Laboratory of High Performance Ceramics Fibers (Xiamen University), Ministry of Education, Xiamen 361005, China
Abstract:In this contribution, thermodynamic computational calculations firstly carried out on Ar-Si-C-O/Ar-Si-C-O-H database demonstrate that passive oxidation is main reaction of continuous freestanding SiC films in both air and 14%H2O/8%O2/78%Ar atmospheres. SiC films were subsequently annealed at 1300?°C, 1400?°C and 1500?°C for 1?h in air and O2-H2O-Ar atmospheres. Results suggest that modulus, hardness and resistivity decrease whereas crystallite size of β-SiC and α-cristobalite increase with elevated annealing temperature. In particular, hardness of wet oxidized samples is lower than that of air oxidized ones. Additionally, their oxidation kinetics models were also established and verified by annealing at 1200?°C in air and wet oxygen for different time from 1?h to 100?h. Oxidation of continuous freestanding SiC films is identified to follow parabolic oxidation kinetics, and water could effectively enhance the oxidation rates. It is revealed that SiO2 layer can protect SiC films from further oxidation, and their thickness increases with prolonged annealing time. In this study, a dense and uniform SiO2 layer with a thickness of 1.1–1.6?µm was produced for sacrificial and passivation layer based on suitable thermal oxidation process (annealing at 1000?°C for 5?h in O2-H2O-Ar environment). Interestingly, fast diffusion paths in this oxide layer could effectively accelerate oxidation process of SiC films. These obtained achievements would promote further applications of SiC films on microelectromechanical systems (MEMS) devices in harsh environments.
Keywords:SiC  Films  Surface  Corrosion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号