首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法优化的煤粉着火温度BP神经网络预测模型
引用本文:杨建国,赵虹,岑可法. 基于遗传算法优化的煤粉着火温度BP神经网络预测模型[J]. 煤炭学报, 2006, 31(2): 211-214
作者姓名:杨建国  赵虹  岑可法
作者单位:浙江大学 热能工程研究所,能源洁净利用与环境工程教育部重点实验室,浙江 杭州,310027
摘    要:采用遗传算法(GA)对BP神经网络(结构和初始权值、阈值)进行了优化,获得了影响煤粉着火温度预测的主要煤质指标(Mad,Aad,Vad,Oad),建立了优化的煤粉着火温度BP神经网络预测模型.对20个校验样本的预测结果表明:预测值与试验值的平均相对误差为0.29%,均方差为59.29,达到了较高的预测精度.

关 键 词:煤粉  着火温度  遗传算法  神经网络  预测模型  
文章编号:0253-9993(2006)02-0211-04
收稿时间:2005-09-28
修稿时间:2005-09-28

Optimized BP network model for predicting igniting temperature of pulverized-coal based on genetic algorithm
YANG Jian-guo,ZHAO Hong,CEN Ke-fa. Optimized BP network model for predicting igniting temperature of pulverized-coal based on genetic algorithm[J]. Journal of China Coal Society, 2006, 31(2): 211-214
Authors:YANG Jian-guo  ZHAO Hong  CEN Ke-fa
Affiliation:Clean Energy and Environment Engineering Key Lab of Ministry of Education, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
Abstract:The BP network optimized with GA(genetic algorithm)was built for prediction of igniting temperature of coal.According to the result,the main quality parameters of coal which influence igniting temperature mostly were obtained.And the optimized BP network model for predicting igniting temperature of coal was built.Tested with 20 samples,the mean relative error of prediction is 0.29%,and the mean square error is 59.29.The optimized BP network model has perfect precision.
Keywords:pulverized-coal  igniting temperature  genetic algorithm  BP network  prediction model
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《煤炭学报》浏览原始摘要信息
点击此处可从《煤炭学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号