首页 | 本学科首页   官方微博 | 高级检索  
     

基于无预训练卷积神经网络的红外车辆目标检测
引用本文:陈皋,王卫华,林丹丹. 基于无预训练卷积神经网络的红外车辆目标检测[J]. 红外技术, 2021, 43(4): 342-348
作者姓名:陈皋  王卫华  林丹丹
作者单位:国防科技大学 电子科学学院 ATR 重点实验室,湖南 长沙 410073;昆明物理研究所,云南 昆明 650233
摘    要:为解决基于卷积神经网络的目标检测算法对预训练权重的过度依赖,特别是数据稀缺条件下的红外场景目标检测,提出了融入注意力模块来缓解不进行预训练所带来的检测性能下降的方法.本文基于YOLO v3算法,在网络结构中融入模仿人类注意力机制的SE和CBAM模块,对提取的特征进行通道层面和空间层面的重标定.根据特征的重要程度,自适应...

关 键 词:目标检测  红外目标  深度学习  卷积神经网络
收稿时间:2020-07-17

Infrared Vehicle Target Detection Based on Convolutional Neural Network without Pre-training
CHEN Gao,WANG Weihua,LIN Dandan. Infrared Vehicle Target Detection Based on Convolutional Neural Network without Pre-training[J]. Infrared Technology, 2021, 43(4): 342-348
Authors:CHEN Gao  WANG Weihua  LIN Dandan
Affiliation:1.National Key Laboratory of Science and Technology on ATR, School of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China1.Kunming Institute of Physics, Kunming 650223, China
Abstract:To tackle the over-dependence of convolutional neural network-based target detection algorithms on pre-training weights,especially for target detection of infrared scenarios under data-sparse conditions,the incorporation of attention modules is proposed to alleviate the degradation of detection performance owing to the absence of pre-training.This paper is based on the YOLO v3 algorithm,which incorporates SE and CBAM modules in a network that mimics human attentional mechanisms to recalibrate the extracted features at the channel and spatial levels.Different weights are adaptively assigned to the features according to their importance,which ultimately improves the detection accuracy.On the constructed infrared vehicle target dataset,the attention module significantly improved the detection accuracy of the non-pre-trained convolutional neural network.Furthermore,the detection accuracy of the network incorporating the CBAM module was 86.3 mAP,demonstrating that the attention module can improve the feature extraction ability of the network and free the network from over-reliance on the pretrained weights.
Keywords:target detection  infrared target  deep learning  convolutional neural network
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《红外技术》浏览原始摘要信息
点击此处可从《红外技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号