首页 | 本学科首页   官方微博 | 高级检索  
     

基于SVM的油水两相流相态识别方法
引用本文:李昱萱,刘兴斌,韩连福,付长凤. 基于SVM的油水两相流相态识别方法[J]. 石油管材与仪器, 2021, 0(2): 91-95
作者姓名:李昱萱  刘兴斌  韩连福  付长凤
作者单位:东北石油大学;大庆油田有限责任公司测试技术服务分公司
基金项目:黑龙江省自然科学基金“化学驱水平小井筒内携砂油气水三相流流动参数测量方法研究”(编号:LH2020E012)。
摘    要:目前国内各陆上油田大多处于高含水开发期,多数油井均为油水两相的混合流动状态,准确识别油水两相流分界面非常必要。为了提升识别率,采用基于小波包分解提取特征参数,运用Python编程语言搭建支持向量机(SVM)训练模型的方法实现油水分界面辨识,经过对训练及测试结果的分析,油水两相流分相识别率达到了100%,证实SVM在油水两相辨识方面有很好的适用性。

关 键 词:油水两相流  地面计量  小波包  特征提取  支持向量机

Recognition Method of Oil-water Two-phase Flow Based on SVM
LI Yuxuan,LIU Xingbin,HAN Lianfu,FU Changfeng. Recognition Method of Oil-water Two-phase Flow Based on SVM[J]. Petroleum Tubular Goods & Instruments, 2021, 0(2): 91-95
Authors:LI Yuxuan  LIU Xingbin  HAN Lianfu  FU Changfeng
Affiliation:(Northeast Petroleum University,Daqing,Heilongjiang 163000,China;Daqing Logging and Testing Services Company,Daqing,Heilongjiang 163153,China)
Abstract:At present,most of the major oilfields on the mainland are in the high water-cut development period,and most of the oil wells are in the mixed flow state of oil-water two-phase flow.It is necessary to identify the phase state of oil-water two-phase flow accurately.In order to improve the recognition rate,the method of extracting characteristic parameters based on wavelet packet analysis and using Python programming language to build a support vector machine(SVM)training model is used to implement the recognition of oil-water interface.After the analysis of the training and test results,the phase recognition rate reaches 100%,which proves that SVM has good applicability in oil-water phase recognition.
Keywords:oil-water two-phase flow  ground measurement  wavelet packet  feature extraction  SVM
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号