首页 | 本学科首页   官方微博 | 高级检索  
     


Current limiting and negative differential resistance in indium oxide based ceramics
Authors:AB Glot  SV Mazurik  BJ Jones  AN Bondarchuk  R Bulpett  N Verma
Affiliation:1. División de Estudios de Posgrado, Universidad Tecnológica de la Mixteca, Huajuapan de León, Oaxaca 69000, Mexico;2. Dep. of Radioelectronics, Dniepropetrovsk National University, Dniepropetrovsk 49050, Ukraine;3. Experimental Techniques Centre, Brunel University, Uxbridge, Middlesex UB8 3PH, UK;1. Universidad Tecnológica de la Mixteca, Huajuapan de León, Oaxaca 69000, México;2. Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Alianza Norte No. 202, Parque de Investigación e Innovación Tecnológica (PIIT), Nueva Carr. Aeropuerto km. 10 Apodaca N.L. 66600, México;3. Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Centro de Investigación e Innovación en Ingeniería Aeronáutica (CIIIA); Carretera a Salinas Victoria km. 2.3, C.P. 66600 Apodaca, N.L., México;4. Cinvestav Saltillo, Av. Industria Metalúrgica No. 1062, Parque Industrial Saltillo-Ramos Arizpe. Ramos Arizpe, Coahuila 25900, México;1. Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;2. National Metal and Materials Technology Center (MTEC), Thailand Science Park, Pathumthani 12120, Thailand;3. Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002, Thailand;4. Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;5. School of Physics, Institute of Science, Suranaree University, Nakhon Ratchasima 30000, Thailand;1. School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454003, China;2. Electronic Materials Research Laboratory, Xi’an Jiaotong University, Xi’an 710049, China;1. Department of Pure and Applied Chemistry, Faculty of Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan;2. Division of Ecosystem Research, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan;3. AGC Seimi Chemical Co., Ltd., 3-2-10 Chigasaki-City, Kanagawa 253-8585, Japan;1. State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China;2. Key Laboratory of Advanced Technology for Specially Functional Materials, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China;3. Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616, USA
Abstract:Indium oxide based ceramics with bismuth oxide addition were sintered in air in the temperature range 800–1300 °C. Current–voltage characteristics of In2O3–Bi2O3 ceramics sintered at different temperatures are weakly nonlinear. After an additional heat treatment in air at about 200 °C samples sintered at a temperature within the narrow range of about 1050–1100 °C exhibit a current limiting effect accompanied by low-frequency current oscillations. It is shown that the observed electrical properties are controlled by the grain-boundary barriers and the heat treatment in air at 200 °C leads to the decrease in the barrier height. Electrical measurements, scanning electron microscopy and X-ray photoelectron spectroscopy results suggest that the current limiting effect observed in In2O3–Bi2O3 may be explained in terms of a modified barrier model; the observed current limiting effect is the result of an increase of barrier height with increasing electric field, due to additional oxygen absorption. It is found that In2O3–Bi2O3–Co3O4–Cr2O3 ceramic exhibits current–voltage characteristics with negative differential resistance due to Joule microheating.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号