首页 | 本学科首页   官方微博 | 高级检索  
     


Post-buckling analysis of viscoelastic plates with fractional derivative models
Authors:JT Katsikadelis  NG Babouskos
Affiliation:School of Civil Engineering, National Technical University of Athens, Athens GR-15773, Greece
Abstract:The post-buckling response of thin plates made of linear viscoelastic materials is investigated. The employed viscoelastic material is described with fractional order time derivatives. The governing equations, which are derived by considering the equilibrium of the plate element, are three coupled nonlinear fractional partial evolution type differential equations in terms of three displacements. The nonlinearity is due to nonlinear kinematic relations based on the von Kármán assumption. The solution is achieved using the analog equation method (AEM), which transforms the original equations into three uncoupled linear equations, namely a linear plate (biharmonic) equation for the transverse deflection and two linear membrane (Poisson’s) equations for the inplane deformation under fictitious loads. The resulting initial value problem for the fictitious sources is a system of nonlinear fractional ordinary differential equations, which is solved using the numerical method developed recently by Katsikadelis for multi-term nonlinear fractional differential equations. The numerical examples not only demonstrate the efficiency and validate the accuracy of the solution procedure, but also give a better insight into this complicated but very interesting engineering plate problem
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号