Diclofenac-bismuth complex: synthesis, physicochemical, and biological evaluation |
| |
Authors: | Abuznaid Mohammed Sallam Al-Sayed Hamdan Imad Al-Hussaini Mayssa Bani-Jaber Ahmad |
| |
Affiliation: | a Faculty of Pharmacy, University of Jordan, Amman, Jordanb International Pharmaceutical Research Company, Amman, Jordanc Faculty of Medicine, Pathology Department, University of Jordan, Amman, Jordan |
| |
Abstract: | Diclofenac-bismuth complexation was attempted by mixing diclofenac sodium (Na) and bismuth-subcitrate aqueous solutions at diclofenac:bismuth molar ratio of 3:1. A solid precipitate was obtained and isolated. The precipitate was characterized for stoichiometric ratio of diclofenac-bismuth complexation using capillary electrophoresis, which showed 1:1 complexation. In addition, nuclear magnetic resonance and Fourier transform infrared analysis were performed for the isolated solid complex and indicated that bismuth was in coordinate bond formation with the carboxylate group of diclofenac. In comparison with diclofenac Na powder, the complex was evaluated as an aqueous suspension for in vitro drug dissolution. The complex exhibited a faster dissolution rate than and similar dissolution extent as diclofenac Na. In comparison with an aqueous solution of diclofenac Na and an aqueous suspension of physical mixture of diclofenac acid (suspended) and bismuth-subcitrate (dissolved), the aqueous complex suspension was evaluated for ulcerogenic effect in rats upon oral administration. The complex led to more gastric ulceration than diclofenac Na, which was not in accordance with the antiulcer properties of bismuth. This antiulcer effect was shown as the physical mixture administration was accompanied with lower gastric ulceration than diclofenac Na administration. These gastric ulceration results were explained in terms of the difference in particle size between solid diclofenac acid formed as a result of the complex breakdown in an acidic medium (0.1 M HCl to simulate the gastric fluid) and that formed as a result of diclofenac Na neutralization. Diclofenac acid particles formed from the complex breakdown were of average size, three times smaller of those formed as a result of diclofenac Na protonation. This difference in particle size was correlated with the higher gastric ulceration associated with the complex than with diclofenac Na in terms of higher coverage of the gastric mucosa with diclofenac, and consequently, higher local ulceration. |
| |
Keywords: | diclofenac bismuth complexation dissolution ulcerogenic activity |
本文献已被 InformaWorld PubMed 等数据库收录! |
|