Design of short CFRP-reinforced steel tubular columns |
| |
Authors: | Jimmy HaedirXiao-Ling Zhao |
| |
Affiliation: | Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia |
| |
Abstract: | This paper presents the design and experimental evaluation of externally bonded carbon fibre-reinforced polymer (CFRP) sheets for strengthening circular steel tubular short columns. In addition to its ease of handling due to its light weight, the high-strength CFRP sheet can provide a degree of restraint to delay buckling of the thin steel wall. Ten short cold-formed steel circular hollow section (CHS) columns, with externally bonded orthogonal (hoop and longitudinal) CFRP sheets, were tested under axial compression. The experimental results indicate that enhancement of the axial section capacity is possible by fibre-reinforcing the steel tube. The design variables investigated to evaluate the strengthening efficiency include the steel yield strength, the modulus of elasticity of the hoop fibre, and the amount and configuration of the fibre reinforcement. Design curves predicting the section capacity of composite steel-CFRP tubular short columns are calculated based on current design guidelines for steel columns. The results highlight the ease of the use of such curves in the FRP strengthening or retrofitting design of tubular columns for section capacity enhancement. |
| |
Keywords: | CFRP sheets Tubular short columns Strengthening Axial compression Design curves Section capacity |
本文献已被 ScienceDirect 等数据库收录! |
|