首页 | 本学科首页   官方微博 | 高级检索  
     

基于CNN和深层语义匹配的中文实体链接模型
作者姓名:吴晓崇  段跃兴  张月琴  闫雄
作者单位:(太原理工大学信息与计算机学院,山西 晋中 030600)
摘    要:实体链接是知识图谱领域的重要研究内容,现有的实体链接模型研究大多集中在对手工特征的选择上,不能很好地利用实体间的语义信息来实现更高效的实体链接效果。故提出一个基于深度语义匹配模型和卷积神经网络的实体链接模型,候选实体生成阶段采用构造同名字典,并基于上下文进行字典扩充,通过匹配来选择候选实体集。通过卷积神经网络来捕获深层语义信息,进行特征提取,并将其作为语义匹配模型的输入,通过模型训练学习选择出最佳参数,并输出语义相似度最高的候选实体作为实体链接的结果。在NLP & CC2014_ERL 数据集上较Ranking SVM模型准确率提升了3.9%,达到86.7%。实验结果表明了提出的新模型性能优于当前的主流模型。

关 键 词:实体链接  知识图谱  卷积神经网络  深层语义模型  语义相似度  
收稿时间:2019-10-21
修稿时间:2020-02-16
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号