首页 | 本学科首页   官方微博 | 高级检索  
     

基于卡曼滤波与均值偏移算法的目标跟踪
引用本文:王宝荣,杨华,王一程,殷松峰. 基于卡曼滤波与均值偏移算法的目标跟踪[J]. 激光与红外, 2009, 39(11): 1233-1236
作者姓名:王宝荣  杨华  王一程  殷松峰
作者单位:电子工程学院,安徽省红外与低温等离子体重点实验室,安徽,合肥,230037;中国人民解放军68215部队,青海,民和,800810;电子工程学院,安徽省红外与低温等离子体重点实验室,安徽,合肥,230037
摘    要:针对变化场景下的目标鲁棒跟踪,提出了一种结合均值漂移与Kalman滤波的跟踪算法.利用YCbCr特征空间进行目标描述,使用Kalman滤波对目标运动速度和空间位置进行预测.根据干扰的不同情况,使用不同的比例因子将两算法的跟踪结果线性加权得到目标的最终位置,并利用一种比较科学的模型更新策略,减轻了模型漂移的影响,视频序列跟踪结果表明,提出的方法能够稳定地进行跟踪.

关 键 词:目标跟踪  均值偏移  卡曼滤波  模型更新

Target tracking based on Kalman filter and mean-shift
WANG Bao-rong,YANG Hu,WANG Yi-cheng,YIN Song-feng. Target tracking based on Kalman filter and mean-shift[J]. Laser & Infrared, 2009, 39(11): 1233-1236
Authors:WANG Bao-rong  YANG Hu  WANG Yi-cheng  YIN Song-feng
Affiliation:Key Lab of Infrared and Low Temperature Plasma of Anhui Province,Electronic Engineering Institute, Hefei 230037,China;Unit 68215,Minhe 800810,China
Abstract:To deal with the robustness of object tracking in the time-variant scene,an algorithm combined Kalman filter with Mean-Shift algorithm is proposed in this paper.We employ YCbCr features to describe the object,and Kalman filter is used to predict the position and velocity of the target.According to different disturbance circumstances,the two algorithms tracking results are done with liner weight method by using different scale factors to get the final position of the target.Furthermore,a model update strategy is utilized to alleviate the model drift.Experimental results show the good performances of the proposed algorithm.
Keywords:target tracking  mean-shift  Kalman filter  model update
本文献已被 万方数据 等数据库收录!
点击此处可从《激光与红外》浏览原始摘要信息
点击此处可从《激光与红外》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号