首页 | 本学科首页   官方微博 | 高级检索  
     

成本优化问题的蚁群算法
引用本文:熊鹰,匡亚萍. 成本优化问题的蚁群算法[J]. 浙江大学学报(工学版), 2007, 41(1): 176-180
作者姓名:熊鹰  匡亚萍
作者单位:1.浙江大学 建筑工程学院,浙江 杭州 310027;2.北京交通大学 经济管理学院,北京 100044
摘    要:为了确定施工项目工期 成本均衡曲线,从而为施工项目计划和控制决策提供有效依据,提出了施工项目工期成本优化问题的蚁群算法.该方法利用施工项目工期成本优化问题的组合优化问题本质,将其转化为旅行商问题,利用自适应权重方法将工期、成本两个目标综合成单目标,采用蚁群算法进行Pareto解的搜索.通过两个实例的计算结果表明,该方法可以有效地确定具有实用价值的Pareto解,且具有较高的全局寻优能力和搜索效率,对于具有大规模网络计划的工期成本优化问题的求解是十分适用的.

关 键 词:工期 成本优化;蚁群算法;组合问题
文章编号:1008-973X(2007)01-0176-05
收稿时间:2005-09-20
修稿时间:2005-09-20

Using ant colony algorithm to solve construction time-cost trade-off problem
XIONG Ying,KUANG Ya-ping. Using ant colony algorithm to solve construction time-cost trade-off problem[J]. Journal of Zhejiang University(Engineering Science), 2007, 41(1): 176-180
Authors:XIONG Ying  KUANG Ya-ping
Affiliation:1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China;2. School of Economics and Management ,Beijing Jiaotong University ,Beijing 100044 ,China
Abstract:An approach for time-cost trade-off of construction project based on ant colony algorithm was proposed to determine the time-cost equilibrium curve,and to provide more information for decision-making for planning and controlling of construction project.To convert time-cost trade-off problem of construction project into travelling salesman problem because of its characteristic of combinatorial optimization,and integrate the two objectives of time and cost into a single objective in terms of adaptive weight approach,this approach was applied to ant colony algorithm to search for Pareto solutions.The results of two case studies showed that this approach is very effective for determining practical Pareto solutions,and has strong global searching ability and efficiency.So that it is very suitable for solving time-cost trade-off problem of large scale network.
Keywords:time-cost trade-off  ant colony algorithm  combinatorial problem
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《浙江大学学报(工学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号