首页 | 本学科首页   官方微博 | 高级检索  
     


Cortical dynamics of visual motion perception: Short-range and long-range apparent motion.
Authors:Grossberg  Stephen; Rudd  Michael E
Abstract:Describes further evidence for a new neural network theory of biological motion perception. The theory clarifies why parallel streams V1→V2, V1→MT, and V1→V2→MT exist for static form and motion form processing among the areas V1, V2, and MT of visual cortex. It also suggests that the static form system generates emergent boundary segmentations whose outputs are insensitive to direction-of-contrast and to direction-of-motion, whereas the motion form system generates emergent boundary segmentations whose outputs are insensitive to direction-of-contrast but sensitive to direction-of-motion. Data on short- and long-range apparent motion percepts are explained including beta, split, gamma and reverse-contrast gamma, and delta motions, as well as visual inertia. Also included are the transition from group motion to element motion in response to a Ternus display as the interstimulus interval (ISI) decreases; group motion in response to a reverse-contrast Ternus display even at short ISIs; speed-up of motion velocity as interflash distance increases or flash duration decreases dependence of the transition from element motion to group motion on stimulus duration and size, various classical dependencies between flash duration, spatial separation, ISI, and motion threshold known as Korte's laws; dependence of motion strength on stimulus orientation and spatial frequency; short-range and long-range form–color interactions; and binocular interactions of flashes to different eyes. (PsycINFO Database Record (c) 2010 APA, all rights reserved)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号