首页 | 本学科首页   官方微博 | 高级检索  
     

基于数据挖掘与改进安时积分的SOC估算
引用本文:王林,陆珂伟,张树梅. 基于数据挖掘与改进安时积分的SOC估算[J]. 电池, 2019, 49(1): 55-59
作者姓名:王林  陆珂伟  张树梅
作者单位:上海捷能汽车技术有限公司,上海,201800;上海捷能汽车技术有限公司,上海,201800;上海捷能汽车技术有限公司,上海,201800
摘    要:提出改进安时积分法对电池荷电状态(SOC)进行在线估算。采用数据挖掘的方法对电池参数进行数据处理,以保证电池采样参数的精确性与标准化。鉴于电池电流倍率、工作温度及老化因子对电池容量的影响,对传统安时积分法进行修正,保证算法的精确性与可行性。基于数据挖掘丝技术的SOC估算算法提高了估算的精度,不同温度下基于联邦城市运行工况(FUDS)循环的SOC估算值与实测值的最大误差仅1.6%。

关 键 词:在线荷电状态(SOC)估算  改进安时积分法  电池管理系统  数据挖掘技术

SOC estimation on basis of data mining and improved ampere-hour counting method
WANG Lin,LU Ke-wei,ZHANG Shu-mei. SOC estimation on basis of data mining and improved ampere-hour counting method[J]. Battery Bimonthly, 2019, 49(1): 55-59
Authors:WANG Lin  LU Ke-wei  ZHANG Shu-mei
Affiliation:(Shanghai E-propulsion Automotive Technology Co.,Ltd.,Shanghai 201800,China)
Abstract:The improved ampere-hour (Ah) counting method was introduced for on-line state of charge (SOC) estimation. Data mining for battery parameters process was proposed to ensure the precision and nonnalization of the sampled data. Based on charge/ discharge current, battery temperature and state of health (SOH) of battery, the traditional Ah integral method was modified to ensure the accuracy and feasibility of the algorithm. The accuracy of estimation was improved based on data mining of SOC estimation algorithm. The maximal error of estimated SOC and measured SOC on different temperatures and federal urban driving schedule (FUDS) cycles was just 1.6%.
Keywords:on-line state of charge (SOC) estimation  improved ampere-hour counting method  battery management system  data mining technology
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号