首页 | 本学科首页   官方微博 | 高级检索  
     

基于双模型融合的自适应目标跟踪算法
引用本文:王艳川,黄海,李邵梅,王亚文. 基于双模型融合的自适应目标跟踪算法[J]. 计算机应用研究, 2017, 34(12)
作者姓名:王艳川  黄海  李邵梅  王亚文
作者单位:国家数字交换系统工程技术研究中心,国家数字交换系统工程技术研究中心,国家数字交换系统工程技术研究中心,国家数字交换系统工程技术研究中心
基金项目:国家自然科学基金资助项目;创新研究群体科学基金;国家科技支撑计划
摘    要:针对目标跟踪过程中的光照变化、背景混乱和目标形变等问题,提出一种背景抑制的HS直方图和核相关滤波双模型融合的自适应跟踪算法。首先引入非线性核相关滤波跟踪模型;其次提出背景抑制的HS颜色直方图跟踪模型,通过分离亮度分量以减小光照干扰,并采用背景加权突出目标信息;然后提出一种自适应融合策略,根据目标与背景的HS特征相似度来动态调整两个模型融合权重,以降低背景混乱和目标姿态变化的影响;最后针对目标尺度变化问题,采用尺度金字塔估计策略进行解决。实验表明,与现有算法相比,提出的算法能更好降低光照、背景混乱等复杂因素干扰,鲁棒性更强。

关 键 词:目标跟踪  相关滤波  HS直方图  尺度金字塔  自适应融合  
收稿时间:2016-08-03
修稿时间:2017-10-17

Adaptive target tracking algorithm based on the fusion of two models
Wang Yanchuan,Huang Hai,Li Shaomei and Wang Yawen. Adaptive target tracking algorithm based on the fusion of two models[J]. Application Research of Computers, 2017, 34(12)
Authors:Wang Yanchuan  Huang Hai  Li Shaomei  Wang Yawen
Affiliation:National Digital Switching System Engineering Technological Research Cente,National Digital Switching System Engineering Technological Research Cente,National Digital Switching System Engineering Technological Research Cente,National Digital Switching System Engineering Technological Research Cente
Abstract:An adaptive tracking algorithm using the fusion of background suppressed HS histogram model and correlation filter model is proposed to deal with variable kinds of complicated tracking problems, such as illumination variation, background clutters, object deformation and so on. Firstly, a non-linear kernelized correlation filter tracking model is introduced. Secondly, a background suppressed HS color histogram tracking model is proposed. The luminance component is separated to reduce the interference of illumination and a background weighted method is used to highlight object information. Furthermore, an adaptive fusion strategy is proposed. The HS feature similarity between the object and each background patch is computed to adjust the fusion weight of two models dynamically. In this way, the proposed algorithm can reduce the influence of background clusters and object pose variation. Finally, a scale pyramid estimation strategy is used to handle large scale variations. Experimental results demonstrate that, compared with other trackers, the proposed approach performs better in regard of complex interference factors, such as illumination variation and background clusters, and has stronger robustness.
Keywords:object tracking   correlation filter   HS histogram   scale pyramid   adaptive fusion  
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号