首页 | 本学科首页   官方微博 | 高级检索  
     

海量视频人脸提取与识别并行框架设计及优化
引用本文:李海跃,谭郁松,伍复慧. 海量视频人脸提取与识别并行框架设计及优化[J]. 计算机应用研究, 2017, 34(12)
作者姓名:李海跃  谭郁松  伍复慧
作者单位:国防科学技术大学 计算机学院,国防科学技术大学 计算机学院,国防科学技术大学 计算机学院
摘    要:近年来,监控设备大量应用于城市智能化建设中,而其产生的海量视频数据,亟待一种快速高效的解决方案。随着大数据处理技术的发展,使得处理海量视频数据成为可能。本文将视频数据集解耦合实现任务的并行处理,通过Spark读取数据流的同时获取关键帧的方式解决了解耦视频数据引起数据倍增问题,并对图片特征数据进行优化,进而在Spark上实现了具有高可扩展性并行处理海量视频数据的框架。本文在天河二号云平台上进行部署实验,分析实验结果表明随着处理节点个数增加本框架可以获得近线性的加速比。

关 键 词:Spark  分布式系统  视频处理  人脸识别
收稿时间:2016-08-12
修稿时间:2017-10-26

Parallel framework for extraction and recognition for large-scale video
HaiYue Li,YuSong Tan and FuHui Wu. Parallel framework for extraction and recognition for large-scale video[J]. Application Research of Computers, 2017, 34(12)
Authors:HaiYue Li  YuSong Tan  FuHui Wu
Affiliation:School of Computer,National University of Defense Technology,School of Computer,National University of Defense Technology,School of Computer,National University of Defense Technology
Abstract:In recent years, a large number of monitoring equipment has been used in intelligent urban construction, and generate massive video data which are in urgent need of a fast and efficient processing. With the development of large data-processing technology, it is possible to handle massive video data. This paper decouples video files in order to realizing the parallelism of tasks, resolves the problem of multiplied data after decoupling video files and optimizes the feature of picture, this paper realizes the better scalable framework of processing video data on Spark. By deploying and experimenting over KylinCloud on Tianhe-2, the experimental results show that the framework gets linear speed-up ratio with the increase of processing node.
Keywords:Spark  Distributed System  Processing Videos  Face Recognition
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号