首页 | 本学科首页   官方微博 | 高级检索  
     


Low-voltage-swing monolithic dc-dc conversion
Authors:Kursun  V Narendra  SG De  VK Friedman  EG
Affiliation:Dept. of Electr. & Comput. Eng., Univ. of Rochester, NY, USA;
Abstract:A low-voltage-swing MOSFET gate drive technique is proposed in this paper for enhancing the efficiency characteristics of high-frequency-switching dc-dc converters. The parasitic power dissipation of a dc-dc converter is reduced by lowering the voltage swing of the power transistor gate drivers. A comprehensive circuit model of the parasitic impedances of a monolithic buck converter is presented. Closed-form expressions for the total power dissipation of a low-swing buck converter are proposed. The effect of reducing the MOSFET gate voltage swings is explored with the proposed circuit model. A range of design parameters is evaluated, permitting the development of a design space for full integration of active and passive devices of a low-swing buck converter on the same die, for a target CMOS technology. The optimum gate voltage swing of a power MOSFET that maximizes efficiency is lower than a standard full voltage swing. An efficiency of 88% at a switching frequency of 102 MHz is achieved for a voltage conversion from 1.8 to 0.9 V with a low-swing dc-dc converter based on a 0.18-/spl mu/m CMOS technology. The power dissipation of a low-swing dc-dc converter is reduced by 27.9% as compared to a standard full-swing dc-dc converter.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号