首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal Hysteresis in Thin-Film Platinum Resistance Thermometers
Authors:K S Gam  I Yang  Y-G Kim
Affiliation:1. Division of Physical Metrology, Korea Research Institute of Standards and Science, Daejeon, 305-340, Republic of Korea
Abstract:Thin-film platinum resistance thermometers (PRTs) are generally manufactured using the deposition of a thin platinum film on an alumina substrate and a laser-trimming method. Because of the strong adhesion between the platinum thin film and the alumina substrate, the PRTs inevitably have strain over the operating temperature range. This causes anomalies and instabilities in the resistance versus temperature characteristics (R?CT). The most prominent and observable effect of thermally induced strain is the thermal hysteresis in the R?CT characteristics. Thermal hysteresis is one of the main uncertainty factors in the calibration of industrial platinum resistance thermometers in laboratories. The thermal hysteresis for 30 thin-film PRTs was measured in the range of 0 °C to 500 °C in 100 °C steps. The thermal hysteresis was measured repeatedly using the same process, and the hysteresis decreased drastically with the repeated measurements. The thermal hysteresis was distributed from 16 mK to 156 mK for all sensors, and the lowest hysteresis was 1 mK to 11 mK in the test temperature range.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号