首页 | 本学科首页   官方微博 | 高级检索  
     


Array-based binary analysis for bacterial typing
Authors:Shepard Jason R E  Danin-Poleg Yael  Kashi Yechezkel  Walt David R
Affiliation:Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA 02155, USA.
Abstract:An allele-specific oligonucleotide microarray was developed for rapid typing of pathogens based on analysis of genomic variations. Using a panel of Escherichia coli strains as a model system, selected loci were sequenced to uncover differences, such as single- or multiple-nucleotide polymorphisms as well as insertion/deletions (indels). While typical genomic profiling experiments employ specific sequences targeted to genomic DNA unique to a single strain or virulent gene, the present array is designed to type bacteria based on a patterned signature response across multiple loci. In the signature concept, all strains are interrogated by hybridizing their amplified DNA to an array containing multiple probe sequences. Allele-specific oligonucleotide probe sequences targeting each of these variable regions were synthesized and included in a custom fiber-optic array. For each locus, a set of specific probe sequences is selected, such that hybridization gives a binary signal/no signal response to each of the probes. Using this strategy for multiple loci, many pathogens or microorganisms could be classified using a limited number of probes. Because of the advantages of the fiber-optic array platform over other array formats, including sensitivity and speed, the platform described in this paper is capable of supporting a high-throughput diagnostic strategy.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号