首页 | 本学科首页   官方微博 | 高级检索  
     


Nitric oxide prevents oxidative damage produced by tert-butyl hydroperoxide in erythroleukemia cells via nitrosylation of heme and non-heme iron. Electron paramagnetic resonance evidence
Authors:NV Gorbunov  JC Yalowich  A Gaddam  P Thampatty  VB Ritov  ER Kisin  NM Elsayed  VE Kagan
Affiliation:Department of Respiratory Research, Division of Medicine, Walter Reed Army Institute of Research, Washington, D. C. 20307, USA.
Abstract:We studied protective effects of NO against tert-butylhydroperoxide (t-BuOOH)-induced oxidations in a subline of human erythroleukemia K562 cells with different intracellular hemoglobin (Hb) concentrations. t-BuOOH-induced formation of oxoferryl-Hb-derived free radical species in cells was demonstrated by low temperature EPR spectroscopy. Intensity of the signals was proportional to Hb concentrations and was correlated with cell viability. Peroxidation of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and cardiolipin metabolically labeled with oxidation-sensitive cis-parinaric acid was induced by t-BuOOH. An NO donor, (Z)-1-N-(3-ammoniopropyl)-N-(n-propyl)amino]-diazen-1-iu m-1, 2-diolate], produced non-heme iron dinitrosyl complexes and hexa- and pentacoordinated Hb-nitrosyl complexes in the cells. Nitrosylation of non-heme iron centers and Hb-heme protected against t-BuOOH-induced: (a) formation of oxoferryl-Hb-derived free radical species, (b) peroxidation of cis-parinaric acid-labeled phospholipids, and (c) cytotoxicity. Since NO did not inhibit peroxidation induced by an azo-initiator of peroxyl radicals, 2, 2'-azobis(2,4-dimethylvaleronitrile), protective effects of NO were due to formation of iron-nitrosyl complexes whose redox interactions with t-BuOOH prevented generation of oxoferryl-Hb-derived free radical species.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号