首页 | 本学科首页   官方微博 | 高级检索  
     


Direct decentralized neural control for nonlinear MIMO magnetic levitation system
Authors:Syuan-Yi  Faa-Jeng  Kuo-Kai
Affiliation:aDepartment of Electrical Engineering, National Central University, Chungli 320, Taiwan
Abstract:A direct modified Elman neural networks (MENNs)-based decentralized controller is proposed to control the magnets of a nonlinear and unstable multi-input multi-output (MIMO) levitation system for the tracking of reference trajectories. First, the operating principles of a magnetic levitation system with two moving magnets are introduced. Then, due to the exact dynamic model of the MIMO magnetic levitation system is not clear, two MENNs are combined to be a direct MENN-based decentralized controller to deal with the highly nonlinear and unstable MIMO magnetic levitation system. Moreover, the connective weights of the MENNs are trained online by back-propagation (BP) methodology and the convergence analysis of the tracking error using discrete-type Lyapunov function is provided. Based on the direct and decentralized concepts, the computational burden is reduced and the controller design is simplified. Furthermore, the experimental results show that the proposed control scheme can control the magnets to track various periodic reference trajectories simultaneously in different operating conditions effectively.
Keywords:Magnetic levitation system  Elman neural network  Decentralized control  MIMO system
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号