首页 | 本学科首页   官方微博 | 高级检索  
     


Stability assessment of the Three-Gorges Dam foundation, China, using physical and numerical modeling—Part I: physical model tests
Authors:Jian Liu  Xia-Ting Feng  Xiu-Li Ding  Jie Zhang  Deng-Ming Yue
Affiliation:a Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Xiaohongshan, Wuhan, Hubei 430071, China;b Yangtze River Scientific Research Institute, Wuhan 430019, China
Abstract:Foundation stability is one of the most important factors influencing the safety of a concrete dam and has been one of the key technical problems in the design of the Three-Gorges Project. The major difficulties lie in two facts. The first one is that the dam foundation consists of rock blocks, with joints and so-called ‘rock bridges’ and the gently dipping joints play a critical role in the foundation stability against sliding. The second one is that, even in the regions where the gently dipping fractures are most developed, there are no through-going sliding paths in the rock mass due to the existence of the rock bridges; so the dam could slide only if some of the rock bridges fail, so as to create at least one through-going sliding path. To date, due to unavoidable shortcomings in physical and numerical modeling techniques, there is not a single satisfactory method to solve the problem completely. For this reason, the integration of multiple methods was adopted in this study and proved to be an effective and reliable approach.This Part I paper describes work based on the results of geological investigations and mechanical tests, relating to the geological and geomechanical models of the Three-Gorges Dam, and then a systematic study procedure was developed to carry out the stability assessment project. Then, 2D and 3D physical model tests for some critical dam sections were performed. In the physical tests, based on similarity theory, various testing materials were selected to simulate the rock, concrete, fracture and rock bridge. The loading and boundary conditions were also modeled to meet the similarity requirements. The failure mechanism was derived through a progressive overloading that simulated the upstream hydrostatic pressure applied to the dam, and the factor of safety was defined as the ratio between the maximum external load inducing the start of sliding instability of the dam foundation and the upstream hydrostatic load. The experimental results indicated that the stability of the Three-Gorges Dam foundation satisfies the safety requirements. Nevertheless, further discussions demonstrated that because of the incomplete definition of factor of safety adopted in the physical model tests, it is also essential to study the stability of the Three-Gorges Dam foundation using numerical modeling, which will be presented in the companion Part II paper.
Keywords:Dam foundation  Stability assessment  Physical model test  Gently dipping joint  Rock bridge  Three-Gorges Dam
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号