首页 | 本学科首页   官方微博 | 高级检索  
     

基于共振解调与神经网络的滚动轴承故障智能诊断
引用本文:刘建文,傅攀,任玥,高龙. 基于共振解调与神经网络的滚动轴承故障智能诊断[J]. 中国测试技术, 2007, 33(2): 13-16
作者姓名:刘建文  傅攀  任玥  高龙
作者单位:西南交通大学机械工程学院,四川,成都,610031
摘    要:介绍了一种基于共振解调与神经网络技术的滚动轴承故障诊断方法。对采集系统所拾取的滚动轴承振动信号进行共振解调处理,依据故障包络频谱中必然存在谐波谱线的规律,在共振解调后的包络信号中提取所需的轴承故障谱线特征信息,并将其作为神经网络输入,利用神经网络进行轴承各种故障状态的识别,实现滚动轴承故障的智能诊断。实验表明,该方法能准确而有效地识别出滚动轴承的不同磨损状态,诊断便捷。

关 键 词:滚动轴承  共振解调  包络信号  神经网络  智能诊断
文章编号:1672-4984(2007)02-0013-03
修稿时间:2006-08-21

Intelligent diagnosis based on demodulated resonance technique and neural network for rolling bearing faults
LIU Jian-wen,FU Pan,REN Yue,GAO Long. Intelligent diagnosis based on demodulated resonance technique and neural network for rolling bearing faults[J]. China Measurement Technology, 2007, 33(2): 13-16
Authors:LIU Jian-wen  FU Pan  REN Yue  GAO Long
Abstract:This paper introduced rolling bearing fault diagnosis based on demodulated resonance technique and neural network.After demodulating resonance processing to rolling bearing's vibrant signal which was got from the system of data acquisition,the authors can pick up the needing rolling fault information in the envelope signal based the law that the fault envelope spectrum have harmony wave spectrum.Input the fault information to neural network and identify all kinds of fault state of the rolling bearing through neural network,which can implement the intelligent fault diagnosis of rolling bearings.
Keywords:Rolling bearing  Demodulated resonance technique  Envelope signal  Neural network  Fault diagnosis
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号