首页 | 本学科首页   官方微博 | 高级检索  
     


Layered Double Hydroxide with Interlayer Quantum Dots and Laminate Defects for High-Performance Supercapacitor
Authors:Qingjun Yang  Zihua Li  Bingang Xu
Affiliation:Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077 P. R. China
Abstract:Owing to the flexible adjustability of laminates, layered double hydroxides (LDHs) can achieve enhanced conductivity and capacitance. However, the regulation of interlayer activity is a great challenge because of the unconquerable charge repulsion between laminates. Herein, a dual-activity design of LDHs is uniquely realized, including laminate defects and interlayer ZnS quantum dots (QDs). Via pre-embedding Zn2+ and controllable vulcanization, ZnS-QDs interpenetrate between CuCo-LDH layers, exposing abundant active sites and widening the layer spacing. Meanwhile, sulfur replaces part of the oxygen on the laminates to form rich oxygen vacancies (CuCo-LDH-S), which does not damage the layered spatial structure and ensures the fast ions/electron transport. Theoretical calculations indicate that the new active centers exhibit higher charge density as compared to CuCo-LDH. Moreover, the copper foam directly provides copper source to ensure that CuCo-LDH-S/ZnS-QDs present a 3D self-supporting structure with ultrastability. Hence, it delivers an ultrahigh capacitance of 7.82 F cm?2 at 2 mA cm?2 and 4.43 F cm?2 at 20 mA cm?2. The hybrid supercapacitors display an outstanding energy density of 299 µWh cm?2 at power density of 1600 µW cm?2, with outstanding capacitance retention of 102.3% and coulomb efficiency of 96.2% after 10 000 cycles.
Keywords:3D self-supporting electrode  CuCo-LDHs  high-area performance  interlayer ZnS-QDs  laminate S-doping
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号