首页 | 本学科首页   官方微博 | 高级检索  
     


Extended Antibonding States and Phonon Localization Induce Ultralow Thermal Conductivity in Low Dimensional Metal Halide
Authors:Paribesh Acharyya  Koushik Pal  Abdul Ahad  Debattam Sarkar  Kewal Singh Rana  Moinak Dutta  Ajay Soni  Umesh V Waghmare  Kanishka Biswas
Affiliation:1. New Chemistry Unit, School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064 India;2. Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, 60208 USA;3. School of Physical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075 India;4. Theoretical Sciences Unit, School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064 India
Abstract:Thermal conductivity, which measures the ease at which heat passes through a crystalline solid, is controlled by the nature of the chemical bonding and periodicity in the solid. This necessitates an in-depth understanding of the crystal structure and chemical bonding to tailor materials with notable lattice thermal conductivity (κL). Herein, the nature of chemical bonding and its influence on the thermal transport properties (2–523 K) of all-inorganic halide perovskite Cs3Bi2I9 are studied. The κL exhibits an ultralow value of ≈0.20  W m?1K?1 in 30–523 K temperature range. The antibonding states just below the Fermi level in the electronic structure arising from the interaction between bismuth 6s and iodine 5p orbitals, weakens the bond and causes soft elasticity in Cs3Bi2I9. First-principles density functional theory (DFT) calculations reveal highly localized soft optical phonon modes originating from Cs-rattling and dynamic double octahedral distortion of 0D Bi2I9]3? in Cs3Bi2I9. These low energy nearly flat optical phonons strongly interact with transverse acoustic modes creating an ultrashort phonon lifetime of ≈1 ps. While the presence of extended antibonding states gives rise to soft anharmonic lattice; Cs rattling provides sharp localized optical phonon modes, which altogether result in strong lattice anharmonicity and ultralow κL.
Keywords:anharmonic soft lattices  extended antibonding  low dimensional halides  low thermal conductivity  phonon localization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号