首页 | 本学科首页   官方微博 | 高级检索  
     


Unveiled Ferroelectricity in Well-Known Non-Ferroelectric Materials and Their Semiconductor Applications
Authors:Dong Hyun Lee  Younghwan Lee  Yong Hyeon Cho  Hyojun Choi  Se Hyun Kim  Min Hyuk Park
Affiliation:1. Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, College of Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826 Republic of Korea;2. Research Institute of Advanced Materials, Seoul National University, Seoul, 08826 Republic of Korea;3. Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, College of Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826 Republic of Korea

Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826 Republic of Korea

Abstract:Ferroelectric materials are considered ideal for emerging memory devices owing to their characteristic remanent polarization, which can be switched by applying a sufficient electric field. However, even several decades after the initial conceptualization of ferroelectric memory, its applications are limited to a niche market. The slow advancement of ferroelectric memories can be attributed to several extant issues, such as the absence of ferroelectric materials with complementary metal–oxide–semiconductor (CMOS) compatibility and scalability. Since the 2010s, ferroelectric memories have attracted increasing interest because of newly discovered ferroelectricity in well-established CMOS-compatible materials, which are previously known to be non-ferroelectric, such as fluorite-structured (Hf,Zr)O2 and wurtzite-structured (Al,Sc)N. With advancing material fabrication technologies, for example, accurate chemical doping and atomic-level thickness control, a metastable polar phase, and switchable polarization with a reasonable electric field can be induced in (Hf,Zr)O2 and (Al,Sc)N. Nonetheless, various issues still exist that urgently require solutions to facilitate the use of the ferroelectric (Hf,Zr)O2 and (Al,Sc)N in emerging memory devices. Thus, ferroelectric (Hf,Zr)O2 and (Al,Sc)N are comprehensively reviewed herein, including their fundamental science and practical applications.
Keywords:aluminum nitride  ferroelectrics  hafnia  neuromorphic computing  semiconductors
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号