Abstract: | The hydrolytic depolymerization of polyethylene terephthalate (PET) with alkaline hydroxides was investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The reactions of the mixtures were conducted in their solid states under nitrogen atmosphere. The experimental results showed that potassium hydroxide possessed the hydrolytic activity of depolymerizing PET into small molecules such as ethylene glycol; in contrast, sodium hydroxide did not. The production rate of ethylene glycol was enhanced by increasing charge ratio of potassium hydroxide to PET. The presence of water facilitated the alkaline hydrolysis of PET; however, the presence of metal acetates decreased the hydrolysis rate. The activation energy for alkaline hydrolysis of PET determined by the thermograms was in good agreement with the value obtained from the experiments in a batch reactor. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1939–1945, 1998 |