首页 | 本学科首页   官方微博 | 高级检索  
     


Hidden-surface removal in polyhedral cross-sections
Authors:Peter Egyed
Affiliation:(1) School of Computer Science, McGill University, 805 Sherbrooke St. West, H3A 2K6 Montreal, Quebec, Canada
Abstract:Many of the fundamental problems in computer graphics involve the notion of visibility. In one approach to the hiddensurface problem, priorities are assigned to the faces of a scene. A realistic image is then rendered by displaying the faces with the resulting priority ordering. We introduce a tree-based formalism for describing priority orderings that simplifies an existing algorithm. As well, a decompositionbased algorithm is presented for classes of scenes that do not in general admit priority orderings. The algorithm requiresO(n logn) time ift=1 andO(tn logn+n logn logm) time ift>1, wheren andm are respectively the number of faces and polyhedra in the scene, andt is a minimum decomposition factor of the scene. Finally, the tree-based formalism is used in the development ofO(n) time insertion and deletion algorithms that solve the problem of dynamically maintaining a priority ordering.
Keywords:Hidden-surface problems  Computational geometry  Priority orderings  Decomposition techniques  Dynamization techniques
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号